Cycle-Accurate Energy Measurement and Characterization of FPGAs

نویسندگان

  • Hyung Gyu Lee
  • Kyungsoo Lee
  • Yongseok Choi
  • Naehyuck Chang
چکیده

Field Programmable Gate Arrays (FPGAs) play many important roles, ranging from small glue logic replacement to System-on-Chip (SoC) designs. Nevertheless, FPGA vendors cannot accurately specify the power consumption of their products on device data sheets because the power consumption of FPGAs is strongly dependent on the target circuit, including resource utilization, logic partitioning, mapping, placement and routing. Although major CAD tools have started to report average power consumption under given transition activities, power-efficient FPGA design demands more detailed information about power consumption. In this paper, we introduce an in-house cycle-accurate FPGA energy measurement tool and energy characterization schemes spanning low-level to high-level design. This tool offers all the capabilities necessary to investigate the energy consumption of FPGAs for operationbased energy characterization, which is applicable to high-level and system-wide energy estimation. It also includes features for low-level energy characterization. We compare our tool with Xilinx XPower and demonstrate the statemachine-based energy characterization of an SDRAM controller.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cycle-accurate Energy Measurement and High-Level Energy Characterization of FPGAs

Field programmable gate arrays (FPGAs) play many important roles, ranging from small glue logic replacement to System-onChip designs. Nevertheless, FPGA vendors can not accurately specify the energy consumption information of their products on the device data sheets because the energy consumption of FPGAs is strongly dependent on target circuit including resource utilization, logic partitioning...

متن کامل

Energy-Based Prediction of Low-Cycle Fatigue Life of CK45 Steel and SS316 Stainless Steel

In this paper, low cycle fatigue life of CK45 steel and SS316 stainless steel under strain-controlled loading are experimentally investigated. In addition, the impact of mean strain and strain amplitude on the fatigue life and cyclic behavior of the materials are studied. Furthermore, it is attempted to predict fatigue life using energy and SWT damage parameters. The experimental results demons...

متن کامل

Novel source-independent characterization methodology for embedded software energy estimation and optimization

In order to design a successful low-energy VLSI system, concurrent energy reduction at hardware and software levels is needed. The available techniques for embedded software energy estimation either provide unusable average-case results or require prohibitively complex hardware setups for cycle-accurate results. This paper introduces a new methodology for high-level software energy estimation f...

متن کامل

Synthesis of nanocrystalline BaTiO3 ceramics via hydrothermal condition and structural characterization by HRTEM and SAED

In the present work, we report a suitable approach for the preparation of BaTiO3 nanostructures via the hydrothermal condition using Dolapix ET85 as surfactant. The powders were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), field emission transmission electron microscopy (FETEM), selected area electron diffra...

متن کامل

Synthesis of nanocrystalline BaTiO3 ceramics via hydrothermal condition and structural characterization by HRTEM and SAED

In the present work, we report a suitable approach for the preparation of BaTiO3 nanostructures via the hydrothermal condition using Dolapix ET85 as surfactant. The powders were investigated by X-ray diffraction (XRD), scanning election microscopy (SEM), energy-dispersive X-ray spectroscopy (EDAX), field emission transmission electron microscopy (FETEM), selected area electron diffra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005